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Abstract—In mathematical terms, an artificial neuron computes
the inner product of a d-dimensional input vector x with its
weight vector w, compares it with a bias value w0 and fires
based on the result of this comparison. Therefore, its decision
boundary is given by the equation wTx+w0 = 0. In this paper,
we propose replacing the linear, hyperplane decision boundary of
a neuron with a curved, paraboloid decision boundary. Thus, the
decision boundary of the proposed paraboloid neuron is given by
the equation (hTx+h0)

2−||x−p||22 = 0, where h and h0 denote
the parameters of the directrix and p denotes the coordinates of
the focus. Such paraboloid neural networks are proven to have
superior recognition accuracy in a number of applications.
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I. INTRODUCTION

THE history of Artificial Neural Networks (ANNs) is as
long as that of machine learning itself, since they both

trace their roots in the mid to late 1950’s [1]. Originally
inspired by the brain’s biological neurons [2], the perceptron
algorithm was developed, in order to train an artificial neuron
[3]. However, it was later pointed out that a single neuron
cannot learn data that are not linearly separable, a notable
example being the eXclusive OR (XOR) function [4]. In order
to overcome this problem, MultiLayer Perceptrons (MLPs) [5]
were developed, in which neurons are arranged in at least
3 layers, where the neurons of each layer are connected to
neurons of the following layers. The first layer is called the
input layer, the last is called the output layer and every other
layer inbetween is called a hidden layer. MLPs have been
proven to be universal approximators [6], i.e., capable of
approximating any function, given the proper parameters.

MLPs were very popular for several years and some of
their applications, such as ALVINN [7], are considered as
milestones in machine learning. However, their popularity
waned with the emergence of support vector machines. They
have seen a recent resurgence, after advances in deep learning
[8], [9], [10], recurrent neural networks [11], [12], and extreme
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learning machines [13], [14]. Neural networks have won
several international pattern recognition challenges in the last
few years [15], [16].

The basic unit of a neural network is an artificial neuron.
Like the biological neurons that inspired its function, a neuron
receives an input signal in the form of a vector and calculates
the dot product of the input and its weight vectors. The neuron
bias is added to the sum. At this point, there are several options
for an activation (or transfer) function, which determines the
neuron output. Common activation functions output a negative
or positive signal, based on the sign of the final sum, or a
value in [0, 1], or in other intervals.

In this paper, we shall focus on the input to the activa-
tion function. The dot product plus bias calculation we just
described measures the signed, unnormalized distance of the
input vector from a hyperplane, as determined by the weight
vector and bias. As such, its decision boundary is a linear
hyperplane. This means that such a neuron is particularly
suited to discriminate data that are linearly separable (at
least locally). As datasets rarely satisfy linear separability,
we propose replacing the linear decision boundary with a
paraboloid one, so that such a neuron can approximate curved
boundaries between different data classes.

In the current bibliography, an alternative to the linear
decision boundary is provided by Radial Basis Function (RBF)
neurons [17]. Instead of measuring distance from a hyperplane,
RBF neurons measure distance from a point. This results
in a hyperspherical or hyperelliptical decision boundary. If
a covariance matrix is included in the distance calculation,
then the decision boundary can be a rotatable and scalable
hyperellipse. However, RBF neural networks are susceptible
to overtraining [18].

We propose using a paraboloid [19] decision boundary. Such
a boundary can be defined as the locus of points that are
equidistant from a directrix hyperplane (or directrix) and a
focal point (or focus). We will henceforth refer to neurons with
hyperplane and paraboloid decision boundaries as hyperplane
neurons and paraboloid neurons, respectively.

Note that the decision boundary of both the RBF and the
paraboloid neurons defined in Rn can be expressed in the
general form of a second degree curve, i.e.,

∑
i,j aijxixj +∑

k bkxk + c = 0, having different parameters aij , bk and c.
In the case of RBF neurons, they are determined by a positive
semidefinite and symmetric matrix. In the case of paraboloid
neurons, the parameters of the paraboloid decision surface are
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determined by the parameters of the directrix and the focus.
Neurons with a completely unrestricted second degree decision
boundary can be found in [20]. However, there have been no
follow up works on such neurons, to the best of our knowledge.

The main advantage of a paraboloid neuron is its ability to
approximate a curved decision surface that would otherwise
require multiple hyperplane neurons. While paraboloid neu-
rons and RBF neurons share some disadvantages regarding
initialization, paraboloid neurons have the ability to utilize a
variation of already available training techniques for hyper-
plane neurons, in order to overcome the said disadvantages.
Furthermore, paraboloid neurons have the ability to approxi-
mate a variety of curved surfaces with fewer parameters than
the RBF neurons. The ability to approximate curved surfaces
with either fewer neurons or fewer parameters per neuron
can constitute them particularly attractive to platforms with
relatively limited resources, such as the hardware embedded
in commercial drones.

Note that the proposed paraboloid neurons should not be
confused with parabolic bursting neurons, which are described
by the theta biological neuron model [21], and belong to
the field of computational neuroscience, rather than machine
learning.

This paper is meant as a proof of concept for the superiority
of paraboloid neurons over hyperplane ones. The scope is to
introduce paraboloid neurons and establish them as a valid al-
ternative to hyperplane neurons, capable of providing improved
performance in neural networks due to the increased flexibility
of their decision boundary. The case for paraboloid neurons
is backed up by evidence through experimental evaluation,
meaning that the stated goal is plausible and that this is an
endeavor worth pursuing.

For the purposes of this work, we shall mainly study the
proposed paraboloid neurons in the context of the single hidden
layer network architecture. This helps us keep things relatively
simple, without diminishing the value of our contribution to
the broader field. As the universal approximator theorem has
proven, a single hidden layer is enough for a network to
approximate any function to an arbitrarily small margin of
error [6]. Single hidden layer architectures were also very
popular in the late 80s and early 90s, as indicated by the
aforementioned ALVINN [7], which was a self driving vehicle
that used this architecture. Furthermore, a multilayer network
can be considered as a collection of single layer networks,
each receiving preprocessed input [22].

The paper is organized as follows. Section II provides
an introduction to hyperplane neurons and neural networks,
Section III describes the paraboloid neurons, illustrates their
advantages and disadvantages in comparison with hyperplane
neurons and discusses the error back-propagation rule for
paraboloid neurons. Section IV details a novel training al-
gorithm, which is designed to overcome the disadvantages
of paraboloid neurons. Section V discusses the application
of paraboloid neurons in Deep Neural Networks. Section VI
provides the experimental evaluation of neural networks that
include paraboloid neurons and are trained using the proposed
novel training algorithms. Section VII concludes the paper.

Fig. 1. Hyperplane decision boundary.

II. HYPERPLANE NEURONS AND NEURAL NETWORKS

Let x be the d-dimensional input vector and w, w0 be the
neuron weight vector and bias, respectively. In correspondence
to the biological neurons, high/low positive weights amplify or
dampen the relevant input, respectively. The neuron calculates
the sum:

u =

d∑
i=1

wixi + w0 = wTx + w0, (1)

which is the signed, unnormalized distance between a point
x and a hyperplane, whose normal vector is given by w and
whose signed distance from the origin is w0

||w||2 . The decision
boundary of this neuron is the hyper plane defined by u = 0
and this is illustrated by a solid line in Figure 1.

An activation, or transfer, function o = Φ(u), calculates
the output o of the neuron. The activation function can be u
itself, a simple step function, a hyperbolic tangent, or a sigmoid
function [5]. The purpose of using a more complex activation
function is to normalize neuron output and to ensure that it is
differentiable. For the purposes of this work, we will assume
that the sigmoid activation function is employed.

In a neural network, neurons are arranged in layers, mainly
the input, hidden and output ones. In the feed-forward case,
the neurons of each layer are fully connected with the neurons
of the next layer and disconnected from any other neuron.

In order to train a neural network by optimizing an error
function, the error back-propagation algorithm was devised
[23], [24], which computes the partial gradient of the error
function E = 1

2 (||y − t||2)2, with respect to every weight,
for a given input vector. In this case, y is the output vector
of the output layer of the network and t is the target vector,
i.e., the desired network output given by the ground truth. This
is accomplished by initially passing the input vector through
the network and recording the output of every neuron, then
applying the chain rule to obtain the partial derivative. This
partial derivative has been found to be:

∂E

∂wij
=
∂E

∂oi

∂oi
∂ui

∂ui
∂wij

= δixj , (2)

where ui is the dot product of the neurons input vector with
its weight vector wi and oi = Φ(ui) is the neuron’s output.
Regarding the parameter δi, named the “back-propagation
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signal”, it has been determined to be:

δi =
∂E

∂oi

∂oi
∂ui

= (yi − ti)Φ(ui)(1− Φ(ui)), (3)

for the output layer and:

δi =
∂E

∂oi

∂oi
∂ui

= (
∑

k∈Ll+1

δkwki)Φ(ui)(1− Φ(ui)). (4)

for all other layers.
Note that the output of every neuron is calculated when the

input is passed through the network in a feed-forward manner,
while the δ of every neuron is calculated backwards. Once the
partial derivatives of every neuron have been calculated, we
can use gradient descent to minimize the error function, by
employing the update rule:

∆wij = −η ∂E
∂wij

, (5)

or we can use more sophisticated optimization methods [25],
if their application is feasible for the size of the problem.

III. PARABOLOID NEURONS

In this section, we shall describe the function of the
proposed paraboloid neurons. We use the definition of a
paraboloid as the locus of points that are equidistant from a
directrix hyperplane and a focal point. In order to measure
distance from a hyperplane, we use the same method as the
hyperplane neurons and employ h and h0 instead of w and
w0 to denote the directrix weights and bias, respectively. For
an input vector x, we calculate the linear term hTx+ h0. Let
p denote the coordinates of the focal point. The distance of
point x from point p is given by:

||x− p||2 =

√√√√ d∑
i=1

(xi − pi)2. (6)

Note that x,h,p ∈ Rd. In order to avoid the squared root
and absolute value that would be required to compare these
distances directly, we square both of them before comparing
them. Thus the signed measure v, which indicates which side
of the paraboloid x falls on is:

v = (hTx + h0)2 − ||x− p||22. (7)

If v < 0, then x is closer to the focal point, if v > 0,
then x is closer to the directrix and, if v = 0, then x lies
exactly on the paraboloid decision boundary. We define the
neurons using this equation to be Type 1 paraboloid neurons.
Swapping the terms of the subtraction in Equation (7), i.e.,
using v = ||x− p||22 − (hTx + h0)2 results in the same deci-
sion boundary, but with the signs of v reversed. We define the
neurons using this subtraction to be Type 2 paraboloid neurons.
The reason for this distinction will become apparent in Section
IV. We will proceed, assuming the paraboloid neurons are Type
1. The Type 2 case is similar, but with the appropriate signs
reversed.

Notice that the distance from the directrix should be nor-
malized, i.e., we should use hTx+h0

||h||2 instead of hTx + h0.
However, we do not normalize this distance, as ||h||22 acts
as an additional weight to the comparison of these two
distances, thus allowing even more flexibility to the decision
boundary. Additionally, we do not need to concern ourselves
with determining ||h||22, as it will be handled by the training
algorithm, simply by omitting the normalization step and using
(7) directly. Finally, we can also rewrite (7) using only vectors
and matrices as so:

v = xT (hhT − I)x + 2(h0h + p)Tx + h20 − pTp, (8)

where I is the d× d identity matrix.
Let us consider the various forms that such a paraboloid

decision boundary can take in Rd. If the focal point is infinitely
away from the directrix, then the paraboloid becomes a hyper-
plane. As the two come closer together, the decision boundary
becomes a regular paraboloid. If the focus comes very close
to the directrix, the decision boundary begins approximating
a sharp spike. In the extreme case, where the focus lies on
the directrix, the decision boundary becomes a line that goes
through the focus and is perpendicular to the directrix. These
possibilities are illustrated in Figure 2 for R2.

Now let us also consider the possibility of appending an
extra dimension xd+1 = 1 at the end of the input vector. In
order to visualize this, consider a 2 dimensional flat piece
of paper, which will act as the original input space with
an additional dimension set to a constant value and a 3
dimensional paraboloid cup, which will act as a paraboloid
neuron. The decision boundary in the original input space is
determined by the intersection of the cup with the paper. If the
focal point of the cup is on the paper and the directrix of the
cup is perpendicular to the paper, then their intersection is the
same as the one described in the previous paragraph. However,
if the cup is placed in such a way that the directrix is on one
side of the paper parallel to it and the focus is on the other, then
the intersection becomes a circle. If the cup is angled slightly
from that position, then the intersection turns from a circle
into an ellipse. Such an ellipse can have any rotation possible.
This concept is illustrated in Figure 3. Generalizing to the d
dimensional space, using a paraboloid neuron in R(d+1) can
provide closed curve decision boundaries, more specifically
hyperspheres and hyperellipses. As we can see, the shape of
the decision boundary is very flexible. Additionally, in this
paper we will focus on paraboloid neurons in a single hidden
layer of the neural network, typically but not necessarily the
first, as that is the layer that processes the input data in their
original space. We assume that any following layers only
contain hyperplane neurons, as our formulation of the back-
propagation rule includes the δi signals of hyperplane neurons,
and that the weights of the neurons in any previous layer
cannot change any further.

Comparing paraboloid neurons with hyperplane ones, we
can see that the former are better suited for approximating
curved decision surfaces, while still being able to approximate
linear decision boundaries. While it is possible for hyperplane
neurons to approximate a curved decision surface, doing so
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Fig. 2. Paraboloid decision boundary forms. The circle, dashed line and solid line denote the focal point, directrix and decision boundary, respectively.

Fig. 3. Paraboloid decision boundary forms in R(d+1).

will require significantly more neurons than approximating the
same surface with paraboloid ones. An example of this can be
seen in Figure 4, where the circle is the focal point, the dashed
lines are the hyperplane neuron/directrix hyperplanes and the
solid lines are the decision curves. RBF neurons provide
another alternative to paraboloid neurons. When using the
Euclidean distance, RBF neurons can produce hyperspherical
decision boundaries and they can also approximate linear
decision boundaries, if they are placed extremely far away from
the data with an extremely large hypersphere radius. The use
of the Mahalanobis distance allows RBF neurons to have fully
rotatable hyperelliptical decision boundaries. However, even
in this case, paraboloid neurons have the theoretical advantage
of being able to have hyperparaboloid decision boundaries,
in addition to hyperspherical and hyperelliptical ones. Finally,
a Mahalanobis distance RBF neuron has d2 + d parameters,
while a paraboloid neuron in the (d + 1) dimensional space
only has 2d + 3 parameters. Regarding the computational
complexities of these neurons, hyperplane neurons require d
multiplications and d+1 additions, paraboloid neurons require
2d+3 multiplications and d+3 additions, while RBF neurons
require 2d2 multiplications and d2 + 2d additions. In practice,
the computations for paraboloid neurons take about twice as
much time as hyperplane neurons, however, their asymptotic
complexity is O(d) in both cases, while it is O(d2) in the case
of RBF neurons.

Unfortunately, for all the flexibility that paraboloid neurons
provide, their maneuverability is rather poor. Consider the case
illustrated in Figure 5, where the neuron decision surface is
curved in the opposite direction of the actual class boundary.
In such a case, either the focal point would have to pass
through the directrix, or both the focus and the directrix would
have to flip for a better fit to the data. However, moving the
focus closer to the directrix would increase the curvature of the

(a) (b)

Fig. 4. Comparison between hyperplane neurons and paraboloid neurons. The
two grey tones denote two different classes: a) Multiple hyperplane neurons
are required to approximate the class boundary. b) A single paraboloid neuron
can more closely approximate the same boundary.

decision boundary, thus increasing the error, and flipping them
would require very specific and complex changes to neuron
parameters. These facts prohibit an optimization method from
finding the better solution. In this case, a paraboloid neuron
could perform worse than a hyperplane one. We shall han-
dle this issue in a subsequent section with a novel training
algorithm, which was specifically devised to circumvent this
problem.

We will now adapt the error back-propagation algorithm for
paraboloid neurons. Paraboloid neurons are defined by two
terms, namely: Hi = hTi x+hi0 and P 2

i =
∑d
j=1 (xj − pij)2.

The respective partial derivatives for these terms are given by:

∂E

∂hij
=
∂E

∂oi

∂oi
∂vi︸ ︷︷ ︸
δi

∂vi
∂H2

i︸ ︷︷ ︸
1

∂H2
i

∂Hi︸ ︷︷ ︸
2Hi

∂Hi

∂hij︸ ︷︷ ︸
xj

= 2δiHixj , (9)

∂E

∂pij
=
∂E

∂oi

∂oi
∂vi︸ ︷︷ ︸
δi

∂vi
∂P 2

i︸︷︷︸
−1

∂P 2
i

∂pij︸︷︷︸
(−2xj+2pij)

= 2δi(xj − pij), (10)
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where δi is calculated in the same way, as in the traditional
back-propagation algorithm.

A. Universal Approximators
We will now prove that paraboloid neural networks are uni-

versal approximators. We will use the actual distances from the
directrix hyperplane and focal point, instead of their squares.
The decision boundaries are theoretically the same and, as we
will see, the parameter λ has a bigger effect on the steepness of
the activation function than the squaring of distances. Hence,
in order to measure the distance of x from the paraboloid, we
will use v(x,h, h0,p) = hTx + h0 − ||x− p||2.

In order to prove that neural networks that include neurons
with paraboloid decision boundaries can approximate any
continuous function in the d-dimensional unit hypercube Id =
[0, 1]d, i.e., the universal approximation theorem, we will be
following the original proof for feed-forward neural networks
[6] almost verbatim, making small changes whenever needed
to accommodate paraboloid decision boundaries. In fact, since
the paraboloid neurons in the hidden layer are connected
to the output layer in a linear fashion, it suffices to prove
that a sigmoidal function σ(v(x,h, h0,p)) is discriminatory,
according to the following definitions:

Definition 1. A function σ is sigmoidal, if:

σ(x)→
{

1 as x→ +∞,
0 as x→ −∞,

Definition 2. A function σ is discriminatory, if for a measure
µ ∈M(Id) ∫

Id

σ(v(x,h, h0,p)dµ(x) = 0

for all p,h ∈ Rd and h0 ∈ R implies that µ = 0

Theorem 1. A function σ(v(x,h, h0,p)) is discriminatory.

Fig. 5. A paraboloid neuron providing a poor separation of two different
classes, illustrated by different grey tones.

Proof: Consider the following function for any
x,h, h0,p, φ:

σ (λ(v(x,h, h0,p)) + φ)



→ 1 as λ→ +∞,
for v(x,h, h0,p) > 0,

→ 0 as λ→ +∞,
for v(x,h, h0,p) < 0,

→ σ(φ) for all λ
for v(x,h, h0,p) = 0.

The functions σλ(x) = σ (λ(v(x,h, h0,p)) + φ) converge
pointwise and boundedly to the function

γ(x) =

{
1 for v(x,h,p, h0) > 0,
0 for v(x,h,p, h0) < 0,
σ(φ) for v(x,h, h0,p) = 0,

as λ→ +∞.
Let Πh,h0,p denote the paraboloid defined by

{x|v(x,h, h0,p) = 0} and Hh,h0,p denote the interior,
open section of the space bisected by the paraboloid and
defined by {x|v(x,h, h0,p) > 0}. According to the Lebesgue
Bounded Convergence theorem and the assumption of
Definition 2, we have that:

0 =

∫
Id

σλ(x)dµ(x) =

∫
Id

γ(x)dµ(x) =

= σ(φ)µ(Πh,h0,p) + µ(Hh,h0,p).

Note that, if hTp + h0 < 0, then γ(x) = 0 for all x, the
paraboloid Πh,h0,p and the space Hh,h0,p do not exist and,
therefore, their measures are 0, as Πh,h0,p = Hh,h0,p = ∅ and
µ(∅) = 0, thus trivially proving that σ is discriminatory in
such a case. We will proceed, assuming that hTp + h0 ≥ 0.

Since µ is a signed measure, we must also prove that the
measure of all bisected spaces being 0 implies that the measure
itself is 0. Fix p and h. For a bounded measurable function
g, define the linear functional F as:

F (g) =

∫
Id

g(||x− p||2 − hTx)dµ(x),

where g is the indicator function of the interval [h0,+∞), i.e.,
g(u) = 1, if u ≥ h0 and g(u) = 0, if u < h0. Note that F
is a bounded functional on L∞(R), since µ is a finite signed
measure [6]. We have:

F (g) =

∫
Id

g(||x− p||2 − hTx)dµ(x) =

= µ(Πp,h,−h0
) + µ(Hp,h,−h0

) = 0.

In a similar fashion, F (g) = 0, if g is defined as the indicator
function of the open interval (h0,+∞). By linearity, F (g) = 0
for the indicator function of any interval and, as a simple
function is a linear combination of indicator functions and
other simple functions, F (g) = 0 for all simple functions.
Since simple functions are dense in L∞(R), F = 0 [6].
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Considering the bounded, measurable functions c(u) =
cos(mTu) and s(u) = sin(mTu), we have:

F (c+ is) =

∫
Id

(cos(mTx) + i sin(mTx))dµ(x) =

=

∫
Id

e(im
Tx)dµ(x) = 0,

for all m, where i denotes the square root of −1. Note
that

∫
Id
e(im

Tx)dµ(x) is the Fourier Transform (FT) of mea-
sure µ and the FT being 0 means that µ = 0 [6], thus
σ(v(x,h, h0,p)) is discriminatory.

IV. SPECIAL PARABOLOID NEURON TRAINING
ALGORITHM

As we have previously mentioned, paraboloid neurons face
issues, when incorrectly initialized, as they may fail to properly
separate data classes. In order to acquire a good initialization,
instead of using paraboloid neurons from the beginning of the
training process, we use auxiliary hyperplane neurons instead.
Once the network has reached convergence, we replace the
auxiliary neurons with two paraboloid neurons with opposite
curvatures and resume training, until the training process
converges again.

When presented with a training set that contains n data
samples of dimensionality d, we define a d + 1 dimensional
feature vector that contains the values of the original input
vector normalized to [−0.1, 0.1] over all input vectors with a
1 appended at the end. We perform the normalization to this
interval, instead of the usual [−1, 1], so that we do not have
to set the focal point and directrix hyperplane of a paraboloid
neuron too far apart, in order to approximate a hyperplanar
decision boundary, as this can result in numerical issues. We
append a unit at the end of the vector, so that the paraboloid
neurons will also be capable of forming closed curve decision
boundaries, as discussed in Section III.

The hyperplane neuron provides the initialization for the
paraboloid neurons. The aim is to create two paraboloid neu-
rons that approximate the decision boundary of the hyperplane
neuron that they will replace, one of which will be Type
1 and the other Type 2, thus preserving the signs of the
original neuron. As we have already seen, this is possible, if
the focal point is sufficiently enough (ideally infinitely) away
from the directrix hyperplane. Since very large numbers cause
numerical stability issues, we avoid moving the focus and
directrix too far apart from each other. Let c be the constant
that represents the offset, by which the focus and directrix
will be moved away from the hyperplane neuron. We have
found that the value c = 20 works well, when all input vector
coordinates are normalized to [−0.1, 0.1].

The parameters h1, h10, p1 and h2, h20, p2 of the first,
Type1 and the second, Type 2 paraboloid neuron, respectively,
are obtained from the parameters w and w0 of the original
hyperplane neuron as follows:

h1 =
w

||w||2
, h10 =

w0

||w||2
+ c,p1 = h10h1,

h2 = −h1, h20 = −h10,p2 = h20h2.

Note that, due to the neuron construction method and the
selected value of c, f1 = hT1 p1 + h10 = 40 and f2 =
hT2 p2 + h20 = 40, as we have moved the focal point and
directrix hyperplane away from the original hyperplane by
c = 20, in opposite directions. The two paraboloid neurons
that replaced the original hyperplane neuron are connected to
the neurons of the next layer, with half the value of the original
neuron’s weight.

After all the auxiliary hyperplane neurons have been re-
placed by a pair of paraboloid neurons each, as discussed
above, we run a single epoch of training. After this epoch has
provided us with the updated paraboloid neuron parameters,
h′1, h′10, p′1, h′2, h′20 and p′2, we measure f ′1 = h′T1 p′1 + h′10
and f ′2 = h′T2 p′2+h′20. We set a threshold value θ and we reject
the first paraboloid neuron, if f1 − f ′1 < θ, since this means
that the focus and the directrix did not move significantly
closer to each other. Therefore, the curvature did not increase.
Thus, the neuron decision boundary is probably configured
erroneously. Respectively, we reject the second paraboloid
neuron, if f2−f ′2 < θ. If both paraboloid neurons are rejected,
we accept the one with the most curved decision boundary.
If both paraboloid neurons are accepted, we can retain the
one with the greatest curvature and reject the other one, or
we can keep both of them. When a neuron is rejected, the
weights of the remaining paraboloid neuron of the pair to the
next layer are restored to the values of the original hyperplane
neuron. Example cases, in which each of the above scenarios
can occur, are illustrated in Figure 6. After we have removed
the rejected neurons from the network, we resume training,
until it converges. Note that the paraboloid neurons trained
with this method should, theoretically, perform at least as well
as the hyperplane ones.

(a) (b) (c)

Fig. 6. Various scenarios, in which paraboloid neurons are retained/rejected.
Different grey tones denote two different classes. The circle, the dashed line
and the solid line denote the paraboloid focal point, directrix and decision
boundary, respectively. a) Both neurons would be rejected, because the classes
are almost linearly separable. However, one of them is retained instead. b) The
neuron which is curved the correct way is retained, while the other is rejected.
c) Both neurons are retained.



7

V. APPLICATION IN DEEP NEURAL NETWORKS

As we already mentioned, current research trends involve
Deep Neural Networks (DNNs), which include several layers
of neurons, sometimes connected in complicated ways. In this
section, we will discuss the application of paraboloid neurons
in such networks. One key observation that allows us to apply
our approach to DNNs is that they usually contain one or
more fully connected layers towards the end, so this is where
we can use the proposed paraboloid neurons, in an attempt to
improve the performance of a DNN. The other key observation
is that a DNN can be considered to have two components. One
component consisting of the first several layers of the DNN,
which can be seen as an adaptive, trainable feature extractor
that feeds its output into the second component, consisting
of the final two layers, which can be considered as the final
classifier. This allows us to treat the first component of a DNN
as a black box that maps the input vectors of a dataset unto
feature vectors, which can be used to train a single hidden layer
paraboloid neural network in the manner we have described.
Furthermore, the final two layers of a trained DNN already
provide a good initialization for the weights of the converted
paraboloid network.

Therefore, we can define the penultimate layer of neurons
to use the sigmoid activation function and train a DNN
with currently available methods and implementations. Once
trained, we can extract the weights of the final two layers
of the DNN to initialize a network with paraboloid neurons
in the first layer and hyperplane neurons in the output layer,
as described in the previous Section. We can then use the
output of the previous layer of the DNN as input for the new
network with paraboloid neurons and train it further, hoping
that it will provide improved results. Note that we require the
input to be in [−0.1, 0.1]d, so we need to appropriately scale
the input feature vectors and the weights of the hidden layer,
in order for the dot product calculated by a neuron to remain
unchanged. If w and w0 are the hidden layer neuron’s weight
vector and bias respectively, D is a diagonal matrix, whose
elements dii are given by dii = 0.1/max(|xji|), where xji is
the i-th coordinate of the j-th feature vector, then it is obvious
that:

wTxj + w0 = ︸ ︷︷ ︸
weights initialization

wTD−1
scaled vector︷︸︸︷
Dxj + w0. (11)

The weights between the hidden layer and output layer are
extracted exactly as they are. In this paper, we apply this
procedure to a Convolutional Neural Network (CNN), which is
a sub-class of deep networks, modeled after biological neuron
connectivity that has been found to be particularly suited for
Computer Vision related tasks [26], [27]. Now that all the
pieces are in place, a synoptic overview of the training process
for the proposed paraboloid neural networks can be found in
Algorithm 1.

VI. EXPERIMENTS

In this section, we shall present the experimental evaluation
of neural networks that use paraboloid neurons. We shall study

if (initialization is available) then
original-network = initialize from file

else
original-network = initialize randomly
for (i = 1 to epochs) do

shuffle data
for (j = 1 to n) do

original-network.feedforward(data[j])
original-network.backpropagation()
original-network.updateweights()

end
best-network = check for new best

end
end
paraboloid-network=convert(original-network)
paraboloid-network.optionallycutneurons()
for (i = 1 to epochs) do

shuffle data
for (j = 1 to n) do

paraboloid-network.feedforward(data[j])
paraboloid-network.backpropagation()
paraboloid-network.updateparameters()

end
best-network = check for new best

end
return best-network

Algorithm 1: Paraboloid neural network training algo-
rithm.

two cases. The first regards evaluating the impact on classi-
fication performance caused by replacing hyperplane neurons
with paraboloid neurons in a single hidden layer network that
has been trained from the beginning. The second case regards
first training a DNN, more specifically a CNN, and then using
paraboloid neurons to replace the neurons of the penultimate
layer. The converted network is then trained further and
the change in classification performance is evaluated. The
experimental methodologies and datasets used in each case are
described in the beginning of the corresponding subsections.
We shall first present the methodology we followed for each
experimental evaluation and the results of said experiments.
Following that is a discussion, in which we overview experi-
mental results and provide our interpretation of them.

A. Experimental Results
1) Single Hidden Layer: Our basic experimental evaluation

methodology for single hidden layer networks is as follows.
We begin by defining a training set, a test set and their respec-
tive class labels for a given dataset. We first train a hyperplane
neural network with one hidden layer and an output layer that
contains a number of neurons equal to the number of classes,
which we will refer to as the original hyperplane network.
After training this first network, we train two paraboloid neural
networks, as described in section IV, one where we keep
all accepted neurons, which will be referred to as enhanced
paraboloid network and another one, where we only retain
one paraboloid neuron for every hyperplane neuron, which is
also referred to as single paraboloid network. Retaining all the



8

TABLE I. ERROR RATES OF PROPOSED AND OTHER NEURAL NETWORKS ON THE MNIST HANDWRITTEN DIGITS DATABASE.

Run
Hyperplane Paraboloid

Original Enchanced Single Enhanced
Neurons Training % Test % Neurons Training % Test % Neurons Training % Test % Neurons Training % Test %

1 300 5.3633% 5.38% 424 5.2650% 5.35% 300 1.8650% 3.48% 424 1.7350% 3.38%
2 300 5.7267% 5.55% 413 5.3850% 5.51% 300 1.8183% 3.69% 413 2.0467% 3.46%
3 300 6.3133% 5.96% 430 5.2983% 5.55% 300 1.7517% 3.51% 430 1.6333% 3.19%
4 300 5.2267% 5.59% 423 5.2317% 5.45% 300 1.9233% 3.56% 423 1.88% 3.30%
5 300 5.72% 5.71% 409 5.1150% 5.36% 300 1.6850% 3.56% 409 1.6833% 3.22%
6 300 5.3183% 5.36% 423 5.5533% 5.65% 300 2.1583% 3.41% 423 1.7683% 3.02%
7 300 5.5467% 5.60% 432 4.9433% 4.92% 300 1.7417% 3.01% 432 1.7683% 3.25%
8 300 6.14% 5.97% 404 6.3750% 6.44% 300 2.24% 3.82% 404 1.885% 3.44%
9 300 6.0833% 6.16% 416 5.1583% 5.17% 300 1.83% 3.39% 416 1.8383% 3.33%

10 300 5.8067% 5.81% 423 5.2917% 5.5% 300 1.6750% 3.13% 423 1.7467% 3.17%
Mean 300 5.72% 5.71% 419.7 5.36% 5.49% 300 1.87% 3.46% 419.7 1.8% 3.28%
(STD) (0) (0.37%) (0.26%) (8.9944) (0.39%) (0.39%) (0) (0.19%) (0.24%) (8.9944) (0.12%) (0.13%)

accepted neurons can result in a larger number of neurons, up
to double that of the original hyperplane network. We record
this number and we then train a final hyperplane network
with the increased number of neurons, so as to be fair in our
comparisons. We will refer to this last network as enhanced
hyperplane one. All training is performed using the steepest
gradient descent. Finally, we also train some RBF neural
networks of similar sizes and compare their performance with
both paraboloid networks.

The datasets used in our experiments regarding single hidden
layer networks are the following: The MNIST handwritten
digit database (n = 70000, d = 784, 10 classes) [28], the
Binghamton University 3D Facial Expression (referred to as
BU, n = 700, d = 1200, 7 classes) [29], the Japanese Female
Facial Expression (JAFFE, n = 210, d = 1200, 7 classes)
[30] and the Cohn-Kanade AU-Coded Expression Database
(Kanade, n = 245, d = 1200, 7 classes) [31]. We used
the provided training and test sets for the MNIST database,
while we used tenfold cross validation for the rest. In the
following tables, the “original hyperplane” label refers to the
first trained neural network, “enhanced hyperplane” refers to
the hyperplane neural network trained with the increased num-
ber of neurons. “Single paraboloid” refers to the paraboloid
network that only accepted one neuron for each hyperplane
and “enhanced paraboloid” refers to the paraboloid network
where all accepted neurons were retained. All networks used
an input layer, only one hidden layer and an output layer. The
replacement of hyperplane neurons with paraboloid neurons
was done in the hidden layer. The number of neurons inside the
hidden layer is listed in the appropriate entry in the following
tables, while the number of neurons in the output layer is equal
to the number of classes (10 for MNIST, 7 for the face related
datasets). All the neurons used the sigmoid activation function
and the optimization objective function was the Mean Square
Error (MSE) measure.

For the MNIST database, we used 300 hyperplane neurons
for the original network, as per [28]. We trained the four
networks mentioned above 10 times (runs) and the error rates
for each network are detailed in Table I. The overall results
are presented in the form of mean (standard deviation) for the
classification error. For each run and the mean, the best training
and test results are emphasized in bold. Table II presents the
comparison between the paraboloid networks and several RBF

TABLE II. TEST ERRORS OF PARABOLOID AND RBF NEURAL
NETWORKS IN THE MNIST DATABASE. THE NUMBER IN PARENTHESES

AFTER EACH NETWORK LABEL DENOTES THE MEAN NUMBER OF
PARABOLOID NEURONS OR THE NUMBER OF RBF NEURONS PER CLASS

(10 CLASSES).

Network Test error %
Paraboloid(300) 3.46% (0.24%)

Paraboloid(419.7) 3.28% (0.12%)
RBF(30) 4.69% (0%)
RBF(44) 4.19% (0%)
RBF(50) 4.12% (0%)

networks on the MNIST dataset.
For the BU, JAFFE and Kanade face recognition databases,

we used a tenfold cross validation approach to evaluate the
improvement in performance provided by paraboloid neurons.
We initially used 200 hyperplane neurons in all cases. Table
III presents the error rates achieved by the hyperplane and
paraboloid networks for each face recognition database, while
Table IV presents the comparison between the paraboloid
networks and the RBF networks for each database. The overall
results are presented in the form of mean (standard deviation)
and the best test results are emphasized in bold.

2) Initialization using Convolutional Neural Networks: Our
experimental evaluation methodology for studying paraboloid
neural networks initialized using a DNN is as follows: We
used the MatConvNet [32] example network for the CIFAR-10
dataset [33], which contains a total of 60000 32×32 images for
10 categories of objects. We trained a CNN with MatConvNet,
then extracted the feature vectors and the weights of the
last two layers, as described in Section V. The penultimate
layer of the CNN contained 64 neurons, while the output
layer contained 10, which is the number of classes. We then
initialized a neural network with the extracted weights and
converted it to a paraboloid network, keeping both paraboloid
neurons for each hyperplane neuron, resulting in 128 neurons
in the hidden layer. Finally, we used the extracted feature
vectors, i.e., the scaled input to the penultimate layer of the
original CNN for each data sample, in order to train the
paraboloid network.

After training several CNNs, we noticed that the training
performed by MatConvNet appeared to converge into 4 distinct
networks. Additionally, the CIFAR-10 dataset contains 50000
train and 10000 test images and the MatConvNet example uses
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TABLE III. ERROR RATES FOR THE FACIAL EXPRESSION RECOGNITION DATABASES.

Database
Hyperplane Paraboloid

Original Enchanced Single Enhanced
Neurons Training % Test % Neurons Training % Test % Neurons Training % Test % Neurons Training % Test %

BU 200 0.49% 0.58% 283.4 0.46% 0.56% 200 0.21% 0.42% 283.4 0.17% 0.41%
(0) (0.03%) (0.04%) (6.8670) (0.03%) (0.04%) (0) (0.04%) (0.05%) (6.8670) (0.04%) (0.07%)

JAFFE 200 0.47% 0.59% 283.05 0.47% 0.61% 200 0.12% 0.34% 283.05 0.1% 0.32%
(0) (0.04%) (0.08%) (6.0912) (0.05%) (0.09%) (0) (0.1%) (0.12%) (6.0912) (0.08%) (0.11%)

Kanade 200 0.46% 0.6% 285.8333 0.44% 0.6% 200 0.09% 0.37% 285.8333 0.07% 0.36%
(0) (0.04%) (0.07%) (7.918) (0.06%) (0.09%) (0) (0.09%) (0.13%) (7.918) (0.07%) (0.13%)

TABLE IV. TEST ERRORS OF PARABOLOID NEURAL NETWORKS AND
RBF NETWORKS IN THE FACIAL EXPRESSION DATABASES. THE NUMBER
IN PARENTHESES AFTER EACH NETWORK DENOTES THE MEAN NUMBER

OF PARABOLOID NEURONS OR THE NUMBER OF RBF NEURONS PER CLASS
(7 CLASSES).

Network Test error %
BU database

Paraboloid(200) 0.042% (0.05%)
Paraboloid(283.4) 0.41% (0.07%)

RBF(30) 0.5% (0.05%)
RBF(41) 0.49 (0.06%)
RBF(50) 0.47% (0.05%)

JAFFE database
Paraboloid(200) 0.34% (0.12%)

Paraboloid(283.05) 0.32% (0.11%)
RBF(10) 0.38% (0.11%)
RBF(20) 0.42% (0.15%)
RBF(24) 0.43% (0.13%)

Kanade database
Paraboloid(200) 0.37% (0.13%)

Paraboloid(285.8333) 0.36% (0.07%)
RBF(15) 0.52% (0.09%)
RBF(20) 0.51% (0.11%)
RBF(26) 0.53% (0.11%)

the test set as a validation set. For each of the 4 networks,
we trained one paraboloid network using the test set as the
validation set, for a more direct comparison. Then we also
trained another paraboloid network, using only its performance
on the training set, so as to test its capability of improving the
performance of a very good initial network, without knowledge
of the test set. In accordance with the MatConvNet example,
the optimization objective function was the Cross Entropy Loss
(CEL) measure, the activation function of the hidden layer
neurons was sigmoid, while the output layer neurons used the
softmax function.

The results of this experiment are presented in Table V.
Since the differences are rather small, the figures in the
table indicate raw numbers of errors out of 10000, instead
of percentages. The “Starting point” column corresponds to
the validation error of the paraboloid network before any
training. The “Proposed (validation)” column corresponds to
the validation error of the network that used the test set as such.
The “Proposed (blind)” column corresponds to the test error
of the network trained using the training set and evaluated on
the test set, without any knowledge of the latter. Finally, the
“Difference” columns contain the change in the performance
achieved by the corresponding trained paraboloid network. The
overall results are presented in the form of mean (standard
deviation). The best overall performance is emphasized in bold.

B. Discussion
By overviewing the results for the single layer networks, we

note that both of the hyperplane neural networks, the original
with 300 neurons and the enhanced are with the additional
neurons, provide very similar results. This indicates that the
test performance of 300 neurons is indeed the limit attained
by hyperplane neural networks for this dataset. Paraboloid
neural networks, on the other hand, outperform the hyperplane
ones in both training and test performance by a significant
margin. Additionally, the enhanced paraboloid network, which
retained all the accepted neurons, provides a slightly better
mean performance and had less error variance than the single
paraboloid network, as expected. It should also be noted that
the state of the art classification performance for hyperplane
neural networks with 300 units on this training set is 4.7% [28],
which was surpassed by the proposed paraboloid ones (error
rate of 3.28%). Table II illustrates that, while RBF networks
outperform hyperplane networks, they are outperformed by the
proposed paraboloid networks.

Regarding the BU, JAFFE and Kanade face recognition
databases, we can see that the paraboloid neural networks
vastly outperform hyperplane ones both in terms of training
and test errors. Again, the enhanced paraboloid network out-
performs the single paraboloid one in all cases, but one, as
can be seen in Table III. An interesting observation is that, in
all different datasets, the enhanced paraboloid network used
about 40% more neurons. Table IV illustrates that the proposed
paraboloid networks again outperform RBF networks.

With respect to the applications of paraboloid neurons in
CNNs, the results presented in Table V indicate that the
usage of paraboloid neurons can indeed improve upon CNNs.
Though the improvement is not very significant, as CNNs are
already state-of-the-art competitive, the paraboloid networks
consistently provided small, yet measurably better results. In
fact, whenever we were able to successfully convert a layer
of hyperplane neurons to a layer of paraboloid ones, the
resulting networks never failed to provide improvement, thus
indicating that paraboloid networks have very strong learning
capabilities. Even when the comparison was unfair towards
paraboloid neurons, as in the case when they were blind to
the test set, there was an average gain in performance when
using them, which indicates that paraboloid networks also have
strong generalization capabilities.

VII. CONCLUSIONS

In this paper, we have presented the case for paraboloid
neural networks, in which neurons have a paraboloid decision
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TABLE V. VALIDATION AND TEST ERRORS FOR THE NETWORKS OBTAINED BY CNNS TRAINED USING MATCONVNET AND THE RESULTING
PARABOLOID NEURAL NETWORKS ON THE CIFAR-10 DATASET.

Network Starting point Proposed (validation) Difference (validation) Proposed (blind) Difference (blind)
1 2009 1984 -25 2002 -7
2 1985 1963 -22 1985 0
3 1961 1942 -19 1952 -9
4 1968 1955 -13 1971 3

Mean (STD) 1980.75 (21.36) 1961 (17.6068) -19.75 (5.1235) 1977.5 (21.2053) -3.25 (5.6789)

boundary. By replacing the weight vector, bias and dot product
involved in the operation of a hyperplane neuron with a com-
bination of two parameter vectors, a bias and a difference of
squared distances, we were able to model a paraboloid decision
boundary in a simple way that is related to the hyperplane one.
It can be trained using the error back-propagation algorithm.

We have shown that the paraboloid neurons are capable
of approximating the linear decision boundaries produced by
hyperplane neurons. They are also capable of forming closed
decision curves and surfaces, i.e., hyperspheres and hyperel-
lipses, like the RBF neurons. Additionally, they are also capa-
ble of producing open curve paraboloid decision boundaries, as
their namesake suggests. Thus, paraboloid neurons provide the
widest variety of possible decision boundaries, with relatively
few more parameters than the hyperplane neurons.

Furthermore, we devised a novel training algorithm that
uses an already trained hyperplane network as initialization
for a paraboloid neural network, by replacing every hyperplane
neuron with a pair of paraboloid neurons. This initialization
provides a paraboloid network with a good starting point and
helps it with avoiding cases in which a paraboloid decision
boundary is curved the wrong way rendering its recovery
impossible to through error function optimization.

Our experiments indicate that paraboloid neurons are gener-
ally useful in improving the performance of neural networks,
thus verifying our expectations. Paraboloid neural networks
consistently provided better error rates in terms of both the
training and test error, than hyperplane ones. Paraboloid neu-
rons even managed to provide an improvement over a state-of-
the-art competitive DNN. There are also theoretical guarantees
that a paraboloid network will perform at least as well as the
network it replaced up to numerical issues.

We believe that paraboloid neurons are powerful tools
that have great potential applications in any neural network,
including DNNs. We have presented evidence that this is a
possibility, as using them in the penultimate layer of a CNN
provided improved results. We also believe that even greater
potential lies in the possibility of using paraboloid neurons in
every layer of a DNN, as even marginal improvements over
several hidden layers could snowball into a significant overall
boost in performance. In any case, we think that the subject of
paraboloid neurons is fresh and unexplored, warranting further
investigation.
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